#include <bits/stdc++.h>
using namespace std;
// Aliases to op
using ll = long long;
using ull = unsigned long long;
using ld = long double;
// Constants
constexpr ll INF = 4e18;
constexpr ld EPS = 1e-9;
constexpr ll MOD = 1e9+7;
// Macros
#define F first
#define S second
#define all(x) begin(x), end(x)
#define allr(x) rbegin(x), rend(x)
typedef vector<int> vi;
typedef pair<int,int> pi;
#define pb push_back
#define MP make_pair
#define REP(i,a,b) for (int i = a; i < b; i++)
const ll mod = 998244353;
ll inv(ll i) {if (i == 1) return 1; return (mod - ((mod / i) * inv(mod % i)) % mod) % mod;}
ll mod_mul(ll a, ll b) {a = a % mod; b = b % mod; return (((a * b) % mod) + mod) % mod;}
ll mod_add(ll a, ll b) {a = a % mod; b = b % mod; return (((a + b) % mod) + mod) % mod;}
ll mod_sub(ll a, ll b) {a = a % mod; b = b % mod; return (((a - b + mod) % mod) + mod) % mod;}
ll ceil_div(ll a, ll b) {return a % b == 0 ? a / b : a / b + 1;}
ll pwr(ll a, ll b) {a %= mod; ll res = 1; while (b > 0) {if (b & 1) res = res * a % mod; a = a * a % mod; b >>= 1;} return res;}
template <typename T> // cin >> vector<T>
istream &operator>>(istream &istream, vector<T> &v)
{
for (auto &it : v)
cin >> it;
return istream;
}
template <typename T> // cout << vector<T>
ostream &operator<<(ostream &ostream, const vector<T> &c)
{
for (auto &it : c)
cout << it << " ";
return ostream;
}
// Mathematical functions
int GCD(int a, int b)
{
while (b)
{
a %= b;
swap(a, b);
}
return a;
}
int GCD_extended(int a, int b, int &x, int &y)
{
x = 1, y = 0;
int x1 = 0, y1 = 1, a1 = a, b1 = b;
while (b1)
{
int q = a1 / b1;
tie(x, x1) = make_tuple(x1, x - q * x1);
tie(y, y1) = make_tuple(y1, y - q * y1);
tie(a1, b1) = make_tuple(b1, a1 - q * b1);
}
return a1;
}
int LCM(int a, int b)
{
return ((ll)a * b) / GCD(a, b);
}
ll modpow(ll x, ll n, int m = MOD)
{
if (x == 0 && n == 0)
return 0; // undefined case
ll res = 1;
while (n > 0)
{
if (n % 2)
res = (res * x) % m;
x = (x * x) % m;
n /= 2;
}
return res;
}
int modinv(int x, int m = MOD)
{
return modpow(x, m - 2, m);
}
mt19937 rng;
int getRandomNumber(int l, int r)
{
uniform_int_distribution<int> dist(l, r);
return dist(rng);
}
// bool cmp(pair<ll, ll>& a,
// pair<ll, ll>& b)
// {
// return a.first < b.first;
// }
bool isPerfectSquare(long double x)
{
// Find floating point value of
// square root of x.
if (x >= 0) {
long long sr = sqrt(x);
// if product of square root
//is equal, then
// return T/F
return (sr * sr == x);
}
// else return false if n<0
return false;
}
int czypie(int v)
{
if (v<=1)
return 0;
for (int i=2; i*i<=v; i++)
if (!(v%i))
return 0;
return 1;
}
ll sum(ll n){
ll ans=n*(n+1)/2;
return ans;
}
bool isPrime(int n)
{
if (n <= 1)
return true;
if (n <= 3)
return true;
if (n % 2 == 0 || n % 3 == 0)
return false;
for (int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
ll binToDec(string s) { return bitset<64>(s).to_ullong(); }
string decToBin(ll a) { return bitset<64>(a).to_string(); }
ll andOperator(ll a, ll b)
{
ll shiftcount = 0;
while (a != b and a > 0)
{
shiftcount++;
a = a >> 1;
b = b >> 1;
}
return int64_t(a << shiftcount);
}
ll factorial(ll n){
ll ans=1;
for (ll i=1;i<=n;i++){
ans=mod_mul(ans,i);
}
return ans;
}
int nCr(ll n, ll r) {
ll ans=factorial(n);
ans=mod_mul(ans,modinv(factorial(r)));
ans=mod_mul(ans,modinv(factorial(n-r)));
return ans;
}
// ll factorial(ll n) {
// if(n == 0)
// return 1;
// ll factorial = 1;
// for (ll i = 2; i <= n; i++)
// factorial = mod_mul(factorial,i);
// return factorial;
// }
void solve(){
int n,q;
cin>>n>>q;
vi a(n);
cin>>a;
vi fr(n+1,0);
for (int i=0;i<n;i++){
fr[a[i]]=i+1;
}
while(q--){
int l,r,x;
cin>>l>>r>>x;
// cout << fr[x] << endl;
int newpos=l;
for (int i=l-1;i<r;i++){
if (a[i]<a[x-1]){
newpos++;
}
}
// cout << newpos << endl;
if (l<=x && x<=r){
if (x==newpos){
cout << "Yes" << endl;
}
else{
cout << "No" << endl;
}
}
else{
cout << "Yes" << endl;
}
}
}
int main(){
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int t=1;
// // vector <ll> f=factorial_array();
// cin>>t;
// cout << t << endl;
while(t--){
// cout << t << endl;
solve();
}
return 0;
}
768A - Oath of the Night's Watch | 156C - Cipher |
545D - Queue | 459B - Pashmak and Flowers |
1538A - Stone Game | 1454C - Sequence Transformation |
165B - Burning Midnight Oil | 17A - Noldbach problem |
1350A - Orac and Factors | 1373A - Donut Shops |
26A - Almost Prime | 1656E - Equal Tree Sums |
1656B - Subtract Operation | 1656A - Good Pairs |
1367A - Short Substrings | 87A - Trains |
664A - Complicated GCD | 1635D - Infinite Set |
1462A - Favorite Sequence | 1445B - Elimination |
1656C - Make Equal With Mod | 567A - Lineland Mail |
1553A - Digits Sum | 1359B - New Theatre Square |
766A - Mahmoud and Longest Uncommon Subsequence | 701B - Cells Not Under Attack |
702A - Maximum Increase | 1656D - K-good |
1426A - Floor Number | 876A - Trip For Meal |